TABLE OF CONTENTS

NITESTAR NS-50 and NS-602
 Theory of Operation2
 Automatic Error Correction (AEC)3

INSTALLATION
 Mounting the Nitestar3
 Mounting the Terminal Block3
 Wiring the Nitestar .. .4

KEY DESCRIPTIONS
 On/Off5
 Run/Hold .. .5
 Disp/Hold5
 Clear/Reset .. .5
 Mark/Enter6
 Calibrate .. .6
 Unit6
 Pre Distance6
 Up/Down6
 Brightness (Backlight)6
 Print7
 Speed Display7
 Periodic Distance Interval7
 Program Select .. .7
 Memory View7

CALIBRATION
 Pre-Calibration Procedures7
 Instrument Calibration .. .8
 Calibration Summary (Automatic)10
 Calibration Summary (Manual)10

MEMORY11
 Storing Events to Memory11
 Recalling Events from Memory13
 Memory Store Summary .. .14
 Store Memory Locations .. .14
 Printing Memory15
 Changing Memory Output Format16
 Plain Language Events .. .16
 Memory Recall Summary .. .17

SURVEY DATA MANAGEMENT SOFTWARE 18
 GPS System Overview .. .18
 GPS Receiver Overview18
 GPS Specifications19

PERIODIC DISTANCE INTERVAL (PDI) 19
 Wiring19
 TTL PDI Connection .. .19
 TTL PDI Wiring .. .20
 12V PDI Connection .. .20
 Setting PDI Distance20
 Setting PDI Duration (Time)21
 Setting PDI Duration (Distance)21

 Setting the Type of PDI22
 Low Going High (PDI Output)22
 High Going Low (PDI Output)23
 Flip Flop (PDI Output)23
 Advanced PDI Uses .. .24
 Set Count Increment .. .24
 Set Count Pre-Distance25
 Summary PDI Keys25
 PDI Count Use25

EMERGENCY 9-1-1 PROGRAM26
 Set Count Increment .. .26
 Set Count Pre-Distance27

AUXILLARY PROGRAMS .. 27
 Self Test (PRM 1) .. .28
 Speed Trap (PRM 6)28
 Begin / End (PRM 15) NS-60 Only29
 Calculation Programs .. .29
 Area Calculation (PRM 10)30
 Volume Calculation (PRM 11)30
 Cost Calculation (PRM 12)30
 Tonnage Calculation (PRM 13)31
 Tonnage Cost (PRM 14)31
 Time Speed Delay Use (PRM 30)32
 Time Speed Delay Limits .. .33
 Printer Use .. .33

SERIAL I/O
 Data Format .. .33
 Serial Connector Diagram34
 Operation34
 Baud Rate Setting34

DPU-414 PRINTER OPERATING INSTRUCTIONS 35
 Operating The Printer35
 Functions That Use The Printer35
 Charging The Printer .. .35
 Opening The Paper Holder36
 Loading The Paper36
 General Specifications (DPU-414)37

TROUBLESHOOTING
 Determining The Problem .. .37
 Instrument is Operational But Won’t Count38

WARRANTY
 Limited Warranty .. .39

HYPERTERMINAL STEP-BY-STEP GUIDE 40 – 44

SPECIFICATIONS
 Nitestar Specifications .. .45

CALIBRATION LOG WORKSHEET ... 46

NITESTAR RETURN FORM .. 47
NITESTAR MODELS NS-50 AND NS-60

The Nu-Metrics NITESTAR Vehicle Installed Distance Measuring Instruments are available in two models; the NS-50 and the NS-60. Both models are easy-to-use distance measuring instruments (DMI) that facilitate land measurements from the convenience of your automobile. The model NS-50 includes features required for most basic surveys and applications.

The NS-60 includes all of the features of the NS-50 with the addition of a RS-232 Serial Port for connection of a serial printer, laptop computer, or GPS unit. With the RS-232 serial option and a laptop computer, it is possible to conduct a complete highway survey and then print directly to a 40 to 80 column serial printer.

DISTANCE MEASURING INSTRUMENT (DMI) THEORY OF OPERATION

For electronic measurement of distance; a proximity sensor, mechanical transmission sensor or electronic interface adapter is used to provide speed pulses to the NITESTAR DMI for distance measurements. How the DMI calculates distance is relatively simple for each of the sensors.

The proximity sensor divides the vehicle tire into pie sections by equally spaced targets attached to the rim. The spacing distance between each target projects the proportional distance of the outer circumference of the tire. For illustrative purposes, assume a 15 inch tire has an average rolling circumference of 7.16 feet. The distance between targets is representative of one eighth of the circumference, which in this example is 0.895 feet. This sensor can also be mounted to make use of the drive shaft of a vehicle and positioned to read the knuckles of the u-joint or a target(s) attached to the u-joint or the drive shaft.

The transmission sensor transmits six pulses for each revolution of the internal disk. Since most automobile speedometers are based on 1000 revolutions per mile, approximately 6000 pulses per mile are obtained. Dividing the pulses received (6000) into the course length (5,280 feet) shows that each pulse represents 0.880 feet (5,280 divided by 6,000 = 0.880).

The electronic interface amplifier takes pulses already generated by the vehicle’s existing speed sensor and conditions this signal. Most vehicle sensors generate more pulses than the DMI needs so the electronic interface includes a divider circuit. This circuit changes the 100,000 pulse/mile vehicle sensor pulse output to the 6,000 per mile required by the DMI.

AUTOMATIC ERROR CORRECTION (AEC)

AEC is a software generated program that uses velocity and time calculations to help compensate for errors from the sensor equipment. This is accomplished by constantly comparing the duration of one sensor pulse to a subsequent pulse. When a pulse is missed, AEC will flash and the DMI will correct the count. The AEC will flash constantly on the left-hand side of the distance screen when sporadic pulses are received, indicating that a problem exists and must be corrected.

INSTALLATION

NOTE: You may want to locate a garage or speedometer shop in your area to perform the installation of the sensor and DMI instrument.

MOUNTING THE NITESTAR

The NITESTAR is designed to be mounted using the supplied bracket or self-adhesive Velcro® strip fasteners that are provided for direct mount. Determine the location where you will mount the DMI in the vehicle. This will assist in determining how to route the power cable for the unit. The DMI should be angled so the operator is able to see the display and keyboard. Remove the self-adhesive protective covering from one of the Velcro fastener strips. Place the sticky side down at the location where you are locating the DMI. Remove the self-adhesive protective covering from the matching strip and press firmly to the back of the DMI. Mount the DMI to the first strip. If using the bracket, repeat the above procedures and fasten the DMI to the bracket before following the remaining steps.

– WARNING –

Do not mount a Nitestar in any area that may block the driver’s view or cause other obstructions.

MOUNTING THE TERMINAL BLOCK - CAUTION!

All wiring and materials should be installed and routed as far away as possible from spark plug wires, ignition coil wire, manifold and exhaust pipes. (Use the cable ties supplied with your Installation Kit to secure wires away from these areas.) Using the #6-32 screws from the installation kit, mount the terminal block and electronic interface (if used) under the instrument panel near the drivers seat. The fender well inside the engine compartment on the driver’s side is an optional mounting location. If using the proximity sensor or mechanical transmission sensor, follow the directions provided with the sensor. Insert
the DMI wiring harness into the power socket on the DMI. Route
the wire lug end of the wiring harness (telephone cable) from the
DMI location to the terminal block. Wire the cable to the terminal
block as shown in the drawing.

WIRING A TRANSMISSION OR ELECTRONIC INTERFACE SENSOR or... SEE THE PROXIMITY SENSOR WIRING DIAGRAM (Inside Back Cover)

– WARNING –
Safety goggles and protective clothing should be worn at all
times when working on or near the vehicle battery or the associ-
ated battery cables.

WIRING THE NITESTAR - CAUTION!
Failure to connect the power and ground wires directly to the
battery may cause engine noise to interfere with the operation of
the DMI. Be sure to connect power and ground wires directly to
the battery terminals.
Connect the Red (power) and Black (ground) wires to the ter-

ninal block as shown.
Connect the other end of the Black (ground) wire to the nega-
tive terminal of the battery. Remove the fuse and connect the red
(power) wire to the positive terminal of the battery.

NOTE: (DO NOT INSERT FUSE UNTIL INSTALLATION IS COM-
plete AND UNIT IS READY TO BE POWERED UP.)

NOTE: Depending on the terminal block location selected,
either the wiring harness from the DMI or the power cable from
the battery will need to be routed through the vehicle firewall.
Usually this can be through an existing rubber grommet. This
could be where the speedometer cable or other wiring passes
from the passenger compartment to the engine compartment. If
no existing grommet or hole can be located, you may have to
carefully (do not damage existing wiring or items mounted on the
firewall) drill a 3/8 inch hole through the firewall. If a new hole
is made you should seal the hole when finished with an electrical
or waterproof putty or sealant.

NOTE: Actual sensor installation instructions may differ from
those shown. Follow the installation instructions included in your
sensor kit.
Use the cable ties supplied to tie off the wiring harness and
power cable neatly so they do not interfere with vehicle operator
or operation. When all installation is complete, replace the fuse
and power up the unit.

KEY DESCRIPTIONS

- Depress the button for approximately 2 seconds to turn
 the unit OFF.

- STOPS & STARTS the COUNT. When NOT counting,
 COUNTER/HOLD flashes on the status display.

- STOPS or freezes the display, DMI is still counting inter-
 nally but the display value is stopped so you may write it
down. The words DISPLAY/HOLD will flash in the status
 window when the instrument is in hold.
 Depress the DISPLAY/HOLD key to resume.

- Sets the distance value to ZERO.

- (Same as PRINT key): Also, marks an INTERVAL on the
display. When the DMI is counting, depressing the key will
 set the current distance in the display window. The next
time the key is pressed the display will show the elapsed
distance from the last mark. DIAGRAM ON PAGE 6.
Prints data to the RS-232 output and updates INTERVAL. If the RS-232 option is available the DMI will output...

Event # Distance Interval Speed <Return>
1. 12345 0 35
2. 12445 100 37

... each time MARK/ENTR or PRINT key is depressed

See Calibration Section

Changes distance units on display each time the key is pressed. Units are: FEET, MILES and KILOMETERS.

Allows entry of a specific starting distance (pre-distance) other than 0 Feet, Miles or KM. To set a specific starting distance, clear the DMI before entering distance, press 3PD, enter distance, then press MARK/ENTER. The number entered can also be added to the current distance displayed. For example, if the current distance displayed is 100 Feet and a number of 30 is entered, then the displayed distance will be 130 Feet.

Toggles the DMI between counting DOWN and UP. The count direction is DOWN if the DN arrow is shown to the left of the distance. If DN is NOT shown the unit is counting UP. NOTE: When the DMI is counting DOWN and reaches 0 it beeps and begins counting UP again.

Press to adjust the backlight brightness level. There are three light levels and "off". The backlight consumes power. Do not leave the backlight on when the vehicle will not be in use for an extended period or the vehicle battery could become depleted.

Changes the SPEED units displayed each time the key is pressed. Units: Feet/Second – Miles/Hour – Kilos/Hour

See PDI Section

See Access to Memory Programs Section

See Memory Section

– IMPORTANT –
Your new Nitestar will be factory programmed with a calibration number of 1000. This value should remain in the Nitestar until the proper calibration procedure is completed as outlined in this manual. If 1000 is not programmed in, manually type in “1000” and press the MARK/ENTER key.

CALIBRATION OVERVIEW
The DMI works by counting pulses that are received from the sensor. The number of pulses is different for each vehicle, so the DMI must be calibrated for each vehicle.

The calibration number you find for your vehicle will be the number of feet the vehicle travels between each pulse multiplied by 1000. This number should be between 400 and 1400. If the number is outside this range the accuracy of the DMI may be adversely affected.

PRE-CALIBRATION PROCEDURE
1. Accurately measure a straight road course 1000' long using a tape measure or similar device. Mark the beginning and end with a paint mark, stake in the ground, or other fixed object.

2. Check the air pressure in the vehicle tires. Make note of the pressure and recheck each day before beginning use of the DMI.

3. Drive the vehicle for approximately 5 miles before running the calibration course. This will help to match the same operating temperatures that the tires will have during normal use.
INSTRUMENT CALIBRATION

1. Insure the DMI is in the **FEET** unit mode. If not, depress the **UNIT** key until the DMI display shows **FT**.
 NOTE: Nitestar Calibration **MUST** be done in **FEET** mode.

2. Insure the DMI is in **COUNT/HOLD** mode and depress the **1 CAL** key. The display will show:

 ![Display Image]

 If the display is blank type in **1000** then press **MARK/ENTER** to save. To return to calibration mode, press the **1CAL** key again.

 IMPORTANT NOTE: The NITESTAR can store up to 4 calibration numbers for 4 different vehicles. The display will show you are working on the calibration number for car -1 and at present it is 1000. You may step through the 4 calibration numbers by pressing the **DISP/HOLD** key.

 PROCEED TO THE START OF THE 1,000 FOOT COURSE.

Align a fixed point on the vehicle exactly with the marker for the beginning of the calibration course. A piece of tape temporarily fixed to the vehicle works well as a reference for the fixed point.

3. Press the **RUN/HOLD** key.

4. The display will show:

 ![Display Image]

5. Depress **MARK/ENTER**. The display will show 0. When the vehicle moves the display will show the pulses counted. The value displayed is a tabulation of pulses counted by the instrument and not a distance traveled.
 NOTE: The SPEED window will NOT operate at this time.

6. At the end of the 1000 foot course, slow the vehicle carefully so it is exactly aligned with the end of course marker. When the car is aligned, press the **RUN/HOLD** key and the number in the display will become your calibration number for this vehicle, (this number should be between 400 and 1400). **Please write this number in the back of your manual or other location that will stay with the vehicle.**

 ![Display Image]

Once you have recorded your calibration number, press **MARK/ENTER** and your calibration number is stored in the DMI. The display should show the course length.

7. Make sure this value is saved by turning the Nitestar off. (Press the **ON/OFF** key).

8. If this is the first time you have calibrated a DMI, repeat the procedure and see if you get the same calibration value.
CALIBRATION SUMMARY (AUTOMATIC)

With the instrument in COUNT/HOLD:

- **1CAL** key - Car number XXXX
- **DISP/HOLD** - Change car number
- **RUN/HOLD** - LEN <1000'> in current units.
 (Enter new course length if needed)
- **MARK/ENTER** - ROLL 0
 Roll through calibration course!
- **RUN/HOLD** - Car number CCCC (New cal number)
- **MARK/ENTER** to enter calibration number
 (course length is displayed)
- **ON/OFF** (Stores your calibration number into memory)

CALIBRATION SUMMARY (MANUAL)

To enter in a known calibration number if your vehicle has previously been calibrated.

With the instrument in COUNT/HOLD:

- **1CAL** key - Car number XXXX
- **DISP/HOLD** - Change car number
- Enter new calibration number (_ _ _ _)
- **MARK/ENTER** - Will exit calibration mode
- **ON/OFF** (Stores your calibration number into memory)

MEMORY

The NITESTAR has 99 memory locations. Each location can store an event and a distance. For example, 99 intersecting street locations can be stored in memory with their corresponding distances. These values are saved in the permanent memory so even after the unit is turned off and back on they can be recalled. If you have the RS-232 option the values can be printed or transferred to a computer.

* Optional Survey Data Management software can be purchased that will store an unlimited number of events and distances on a laptop computer.

STORING EVENTS TO MEMORY

Insure that the DMI is in COUNT HOLD mode and your UNIT and COUNT DIRECTION are correct.

Depress **9PRM** key.
The display will show:

Depress **0VIEW** key followed by **MARK/ENTR**.
The display will show:

This starts the memory store sequence.

In this mode you can depress any of the following keys.

CLEAR : Clears all memory and exits memory mode.

PRINT : If you have the RS-232 option (NS-60 ONLY) and a printer, the DMI will print a copy of the survey header on the printer.
VIEW : Exits memory store. Now the NITESTAR is back to standard operation mode.

RUN/HOLD : Will start the NITESTAR counting.

The count value will be changing depending on your speed. The **MARK** number is the number of the memory location and the code is the code that you wish to store there. Typing any numbers on the number pad will store those digits into the code field. If you wanted the code 82 you would type an 8 then a 2. Typing more than two digits will just shift the digits to hold the last two you typed. These will be the only values stored. You can have any code from 00 to 99.

Depressing the **MARK/ENTR** key will store the code and the current distance into memory. When you do this the **MARK** value will go up by one and the code will become 00 again.

This would have stored a code 82 at distance 3216 in location number one (1). Now we are ready to enter location two (2).

You can continue in this way until all 99 locations are used and the NITESTAR will automatically leave **STORE MEMORY** mode.

If you did not clear memory and start the **MEMORY STORE** again it will start at the next unused memory location. If the display flashes **FULL**, all locations are full and you will have to clear memory before you can store more data.

If you wish to **EXIT STORE MEMORY** before filling all 99 locations, depress the **RUN/HOLD** key to place the instrument in **COUNT HOLD** mode and then depress **OVIEW** key, (the **MARK/CODE** message will disappear).

RECALLING EVENTS FROM MEMORY

Insure that the DMI is in **COUNT/HOLD** mode and the desired UNIT mode is set.

- Depress the **OVIEW** key

This starts the memory recall sequence. The first window displays the address number (**MARK**) and the code at this address.

The main distance window displays the road track distance stored in this memory location.

For address location 1 we have code 12 and a distance of 34,234 from the starting point.
At this point you can depress any of the following keys on the next page:

MARK/ENTR: Moves to next memory location.

PRINT: If you have the RS-232 option and a printer attached it will print all memory locations.

VIEW: Exits memory recall. Now the NITESTAR is back to standard operation mode.

MEMORY STORE SUMMARY

CLEAR: Clears all memory and exits memory mode.

PRINT: If you have the RS-232 option and a printer this will print a copy of the survey header on the printer.

RUN/HOLD: Starts/stops NITESTAR counting

VIEW: Exits memory store. Now the NITESTAR is back to standard operation.

IMPORTANT NOTE: IF USING A NS-60, YOU MAY WISH TO PRINT INFORMATION TO YOUR COMPUTER. YOU MAY DO THIS BY USING THE HYPERTERMINAL APPLICATION. SEE SECTION 6

STORE MEMORY LOCATIONS

0 - 9: While counting will enter in CODE values one at a time.

DISP/HOLD: While counting (NS-60 only) will print current distance and code value but NOT store them.

MARK/ENTR: While counting stores code and distance in memory location (NS-60 ONLY).

If you have the RS-232 option, each time you press MARK/ENTER to store data in memory a line will print showing this data on the printer. See the RS-232/PRINTER section for further details.

PRINTING MEMORY

If you have the RS-232 option and a printer you can print a copy of the survey header on the printer by depressing the 9PRM key, 0VIEW key, the MARK/ENTR key, and then the 6PRINT key.

The printout will look like this:

PROJECT NO: ________________ STATE:_____
DISTRICT/CITY/CO:_______________________
ROUTE:_________DIR:______ OPR:_______
BEGIN:_______________ END:_______________

Depress 0VIEW key to exit print header.

If you have the RS-232 option and a printer or are transferring data to a computer the memory mode can print out a listing of each event recorded along with its road distance and incremental distance from the previous event. For example, a printout would look as follows:

<table>
<thead>
<tr>
<th>Event#</th>
<th>Distance</th>
<th>Delta</th>
<th>Code</th>
</tr>
</thead>
<tbody>
<tr>
<td>1.</td>
<td>0</td>
<td>0</td>
<td>12</td>
</tr>
<tr>
<td>2.</td>
<td>123</td>
<td>123</td>
<td>5</td>
</tr>
<tr>
<td>3.</td>
<td>241</td>
<td>117</td>
<td>7</td>
</tr>
</tbody>
</table>

Event #: Count of events seen starts at 1 on each survey
Distance: Road track distance in current units (in example FEET)
Delta: Distance since last event (i.e. event 2 is 123 feet down the road from event 1)
Code: The event code input by the user
CHANGING MEMORY OUTPUT FORMAT

The code output by the NITESTAR can be either the number input by the user as shown above or you have the option of automatically having that event number translated to a plain language description. The standard NITESTAR has events 1 through 20 assigned as follows:

<table>
<thead>
<tr>
<th>Code</th>
<th>Plain Language</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>B.LINE</td>
<td>Boundary Line (State, County, etc.)</td>
</tr>
<tr>
<td>2</td>
<td>INT B/W</td>
<td>Intersection Both Ways (Crossroad)</td>
</tr>
<tr>
<td>3</td>
<td>INT R</td>
<td>Intersection Right</td>
</tr>
<tr>
<td>4</td>
<td>INT L</td>
<td>Intersection L</td>
</tr>
<tr>
<td>5</td>
<td>BEG 2 LN</td>
<td>Begin Two Lane Roadway</td>
</tr>
<tr>
<td>6</td>
<td>BEG MULT LN</td>
<td>Begin Multi-Lane Roadway</td>
</tr>
<tr>
<td>7</td>
<td>BEG BR</td>
<td>Begin Bridge</td>
</tr>
<tr>
<td>8</td>
<td>END BR</td>
<td>End Bridge</td>
</tr>
<tr>
<td>9</td>
<td>CUL</td>
<td>Culvert</td>
</tr>
<tr>
<td>10</td>
<td>SCH.Z</td>
<td>School Zone</td>
</tr>
<tr>
<td>11</td>
<td>RxR</td>
<td>Railroad Crossing</td>
</tr>
<tr>
<td>12</td>
<td>STA.M</td>
<td>Station or Mile Marker</td>
</tr>
<tr>
<td>13</td>
<td>SPD.L</td>
<td>Speed Limit Change</td>
</tr>
<tr>
<td>14</td>
<td>U.POLE</td>
<td>Utility Pole</td>
</tr>
<tr>
<td>15</td>
<td>PASS.R</td>
<td>Pass Right (Centerline Markings)</td>
</tr>
<tr>
<td>16</td>
<td>PASS.B</td>
<td>Pass Both Ways</td>
</tr>
<tr>
<td>17</td>
<td>PASS.L</td>
<td>Pass Left</td>
</tr>
<tr>
<td>18</td>
<td>N.PASS</td>
<td>No Passing Both Ways</td>
</tr>
<tr>
<td>19</td>
<td>DRW</td>
<td>Driveway</td>
</tr>
<tr>
<td>20</td>
<td>M/B</td>
<td>Mailbox</td>
</tr>
</tbody>
</table>

By default the NITESTAR prints the memory transfer as shown above with the code values as numbers. If you would like to print them using the plain language translations depress 9PRM key, 2UNIT key, then the MARK/ENTR key. The display will show:

![Memory Transfer](image)

To switch back to code # output, depress 9PRM key, 3PD, then the MARK/ENTR key.

The display will show:

![Memory Recall Summary](image)

MEMORY RECALL SUMMARY

MARK/ENTR : Moves to next memory location.

PRINT : If you have the RS-232 option and a printer attached, all memory locations will be printed.

VIEW : Exits MEMORY RECALL.
The NITESTAR is back to standard operation mode.

PGM2 : Set memory transfer to show codes as plain language (—PL—)

PGM3 : Set memory transfer to show codes as #’s (—CODES—)
SURVEY DATA MANAGEMENT (SDM) SOFTWARE

Survey Data Management software is designed to provide the ability to organize, view, and report information collected during various surveys on or off the road. With the new WINDOWS SDM software, reporting is simplified with “Crystal Reports™” generated output. The ability to export to other WINDOWS applications is also available. Data is stored in Microsoft Access format.

KEY FEATURES:
• Vehicle Calibration for up to 4 Vehicles
• Customizable KEY DEFINITIONS for each user or application
• Ability to operate the NITESTAR remotely
• Ability to utilize optional GPS sensor

Initially, the SDM software is used in conjunction with the Nitestar 60 DMI, which is interfacing with a laptop computer during a survey. After collecting and saving survey information, the saved information can be viewed and organized at user’s convenience.

GPS - THE GLOBAL POSITIONING SYSTEM

GPS technology helps provide latitude, longitude, and altitude coordinates for a user’s location regardless of the weather. The GPS course acquisition code (CA) was designed by the United States Department of Defense for use by the military and was made available for commercial applications. Currently, GPS consists of a constellation of 27 earth orbiting satellites approximately 12,000 miles above the Earth. GPS satellites transmit radio signals containing time and orbital data to calculate satellite position and user receiver data. GPS receivers monitor the constellations and require signals from at least three satellites to determine a two dimension position. A fourth satellite signal is required to compute three-dimensional positioning for elevation or altitude.

SEE A SAMPLE SURVEY ON PAGE 48

THE NITESTAR GPS RECEIVER

The NITESTAR GPS RECEIVER provides GPS coordinates for applications that require vehicle mobility and in applications involving dense urban centers and dense foliage where signals may typically be weak or blocked. The receiver tracks all visible GPS satellites continuously and uses all the measurements obtained to produce a GPS navigation solution. Position jumps caused by blockage in receivers with fewer channels are greatly reduced along with the effects of multi-path signals. Road track data can be collected and stored by using a Laptop or Notebook PC. SDM software is used to integrate inputs from the GPS and the NITESTAR DMI distance data. GPS Receiver Architecture: Twelve parallel satellite continuous tracking channels for fast acquisition and reacquisition. Enhanced algorithms provide superior navigation performance in “urban canyon” and dense foliage environments.

GPS RECEIVER SPECIFICATIONS

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Specification</th>
</tr>
</thead>
<tbody>
<tr>
<td>Power</td>
<td>5v DC ± 5%</td>
</tr>
<tr>
<td>Velocity</td>
<td>0.1 meters/second</td>
</tr>
<tr>
<td>Time</td>
<td>1 microsecond synchronized to GPS time</td>
</tr>
<tr>
<td>Solution Update Rate</td>
<td>1 per second (1 Hz)</td>
</tr>
<tr>
<td>Dimensions</td>
<td>2.6" (66mm) x 2.6" (66mm) x 0.28" (7mm)</td>
</tr>
<tr>
<td>Weight</td>
<td>1.4 oz (40 g)</td>
</tr>
<tr>
<td>Operating Temp.</td>
<td>-4°F to 185°F (-20°C to 85°C)</td>
</tr>
<tr>
<td>Connector Type</td>
<td>USB or Serial RS-232</td>
</tr>
<tr>
<td>2D Accuracy (GPS)</td>
<td>Horizontal < 7 meters (CEP), 11 meters 2 dRMS.</td>
</tr>
<tr>
<td>3D Accuracy (GPS)</td>
<td><14 meters (CEP).</td>
</tr>
<tr>
<td>Acquisition/Reacquisition Performance</td>
<td>< 15 seconds Time to Cold Start < 120 seconds.</td>
</tr>
<tr>
<td>Antenna</td>
<td>GPS passive</td>
</tr>
<tr>
<td>Datums</td>
<td>WGS-84</td>
</tr>
<tr>
<td>Serial Interface</td>
<td>RS-232</td>
</tr>
</tbody>
</table>

PERIODIC DISTANCE INTERVAL - WIRING!

The NITESTAR produces a 5 volt, low current pulse (<5mA) on the RED wire of the standard wiring harness. NOTE: If you wish to control 12v, high current devices (>5mA), you will need the P/N 1050 PDI amplifier unit. This unit will allow you to control 12v devices with up to 1 ampere of current. If you are using the PDI pulse to go to a computer or other low current (<5mA... sometimes called TTL) device you do not need the PN-1050 amplifier. Connect it directly to the RED wire from the NITESTAR. If you are in doubt about this connection please consult your distributor or Nu-Metrics as a connection error can damage the NITESTAR or your equipment.

TTL PDI CONNECTION

If the PDI pulse is to be directly connected to a computer or other low voltage/low power device it can be wired as shown:

```
+----------------------------------+
|                                 |
| 1 ms                            |
|                                 |
|                                 |
|                                 |
| 0.001 Miles                      |
+----------------------------------+
```

NOTE: Making the connection to external equipment requires the users knowledge of the equipment and Nu-metrics will not be able to support this application.
TTL PDI WIRING

The device is connected to the **RED** wire; a 47K Ω resistor is necessary to supply the ground level to the device.

12 V PDI CONNECTION

See P/N 1050 Manual.

SETTING PDI DISTANCE *(i.e. feet/miles/kilos between pulses)*

STEP 1: Set the measurement units, (feet,miles or KM), you wish to use for your PDI distance. Even though the default “1” appears, you must re-enter the required PDI Distance number and press **MARK/ENTR**.

STEP 2: Next, press the following keys: 8PD1 key, 2UNIT key (DISTANCE), **MARK/ENTR** key.

SETTING PDI DURATION *(TIME = milliseconds the pulse is ON)*

STEP 1: Press the following keys: 8PD1 key, 3PD key (number of milliseconds), **MARK/ENTR** key. 1000 mill-secs = 1 sec.

STEP 2: Remember, depending on your PDI distance, if your pulses are too long they can run together at high speeds. If you use pulses of less than 10 milliseconds duration then this should not happen at normal highway speeds. If you need longer pulses use the following formula to find what your absolute maximum speed will be.

\[
\text{SPEED} = \frac{(\text{PDI Length}) \times 1000}{(\text{PDI Time in milliseconds})}
\]

This speed will be in Length/second units and use your standard conversion factors to change to KPH or MPH

For feet/second -> MPH multiply by 0.6818
For kilometers/sec -> KPH multiply by 3600
STEP 2: At the PLEN prompt, enter the length in current units you would like your pulse to be on. You can set the pulse to be on for a set length.

The length duration will have an error = +/- CALIBRATION NO./1000 FEET. If you had a calibration number of 800, your PDI pulse duration would be your set length +/- 0.8 FOOT.

The duration is limited to 32,768* CALIBRATION NO. / 1000 FEET.
If you had a calibration # of 700 your max duration would be:
MAX Duration = 32,768* 700/1000 = 22,958 Feet.
or 0.034 mi... or 0.044 km

If you enter a value over this it will fold your input value back down into this range.

IMPORTANT NOTE: Do not set this length greater than the PDI distance. If you have a PDI distance of 100 feet, do not set the duration to 200 feet. After the first pulse the PDI pulse will go on then never shut off.

SETTING THE TYPE OF PDI
The device that uses the PDI signal sometimes has certain requirements for the signal. The NITESTAR can produce three types of PDI. Let us take for example a PDI set for every 10 feet and a duration of 1 millisecond.

LOW GOING HIGH (DEFAULT SETTING)
The default setting would be with the output normally low (0 volts) and pulsing high at each PDI distance. If you want to return to this default setting depress the following sequence of keys: 8PDI key, 6PRINT key, MARK/ENTR key.

The output shown below is for Low Going High:

HIGH GOING LOW
If you want the output normally low (0 volts) and pulsing LOW at each PDI distance depress the following sequence of keys: 8PDI key, 5BRIGHTNESS key, MARK/ENTR key.

The output shown below is for High Going Low:

FLIP FLOP
If you want to set FLIP/FLOP high on every other 10 ft stretch depress the following sequence of keys: 8PDI key, 4UP/DOWN key, MARK/ENTR key.
...and your output would be:

<table>
<thead>
<tr>
<th>High Level</th>
<th>1 ms</th>
<th>1 ms</th>
<th>1 ms</th>
</tr>
</thead>
<tbody>
<tr>
<td>5 or 12v</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>0 Volts</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Note that the duration does not apply to this one, it just alternates HIGH & LOW on each PDI distance.

ADVANCED PDI USES

As pre-mentioned a count of the PDI pulses can be displayed in the INTERVAL window. You must set the Count Increment and optionally the Starting Value. The INTERVAL window will then display the Starting Value and then with the vehicle moving and the COUNT/HOLD off, the INTERVAL window will display the Count Increment value as derived from the PDI pulse output.

SET COUNT INCREMENT

The Count Increment number is the amount of PDI pulses required to increment the count displayed in the interval window. If you set a PDI distance of 50 feet and a count increment of 1 you will see the count displayed in the interval window every 50 feet.

You **MUST** set the count increment for the display PDI count function to be displayed. To set the increment count value depress the following sequence of keys: 8PDI key, 7SPEED key, and choose the INCREMENT DISTANCE. Please note that after you press the "7 SPEED" key, the default "1" will appear. At this time, re-enter whatever value you choose. Press MARK/ENTR.

While entering increment distance depressing CLEAR/RST key will set the distance and PDI count to 0.

SET COUNT PRE-DISTANCE

To have your PDI count to start at a value other than 0 depress the following sequence of keys: 8PDI key, 8PDI key again, (ENTER PREDISTANCE VALUE), MARK/ENTR key. The value will appear in the INTERVAL window.

SUMMARY PDI KEYS

First Press 8PDI and then:

1.) - Set PDI Distance
2.) - Set PDI Distance
3.) - Set PDI Duration by TIME
4.) - Set PDI Duration by DISTANCE - (DISP/HOLD)
5.) - Set Flip/Flop PDI (High then low on alternate PDI distances)
6.) - Set LOW going HIGH (Standard)
7.) - Set distance increment for PDI Count display
8.) - Set initial value for PDI Count display

CLEAR - Turn OFF PDI (& PDI count display)

PDI COUNT USE

An example will make this function a little clearer. Many authorities are setting up 911 emergency call response systems. When a person calls for help, the Emergency Response Center can, via phone company equipment, determine the phone number of the caller. The callers address can then be determined.

The Emergency Response Center can then dispatch police, fire or ambulance teams to handle the problem. This may work well except in rural areas when the addresses are undefined or Rural Route box numbers. Emergency response teams may not know how to locate the address. Rural governments are solving this problem by naming all their roads (and putting up signs) and assigning addresses to the houses on these roads. The phone numbers are then associated with a street address that police, fireman and ambulance drivers can find.

How do the local governments assign these addresses? After naming the roads each house must be given a number. Each house can not be numbered consecutively since new houses will probably be built between existing houses and these places will need numbers. If a standard lot width is determined (say 50’) then every 50 feet assign a new address. This way you can number the houses now and when new houses are added you can give them numbers in the correct order.

(continued...)
The DMI can be used to assist in this process. Begin your distance at the start of the road and at each house divide the distance by 50, for example, and you have the number. The DMI performs this function and no calculations are necessary. With the PRE-DISTANCE function of the DMI you can start your address numbering from a known value. If a new house is added you would not have to drive the entire road to locate a new address.

EMERGENCY 911 ADDRESSING PROGRAM

SETTING UNIT MEASUREMENT

The Unit Measurement is the distance segment used to determine a house number for E-911 addressing (i.e. 5.28 ft, 10 ft, 10.56 ft, 1 meter, and so on).

STEP 1

Set the unit measurement (Feet, Miles or KM), you wish to use for addressing. If using whole feet measurement, set unit measurement to FEET. If using feet measurement with decimal point set unit measurement to MILES. And, if you are using a meter measurement set unit measurement to KM.

The MILES and KM unit measurement will display a whole digit number with three decimal points. The third decimal point in MILES unit measurement represents 1/1000th of a mile, or 5.28 feet. Also, the third decimal point in the KM unit measurement represents 1/1000th of a KM, or 1 meter.

STEP 2

To set the unit measurement; press this sequence of keys, 8PDI key, 2UNIT key (DISTANCE), MARK/ENTR key.

NOTE

After you press the “2 UNIT” key, the default “1” will appear. At this time re-enter the value of unit measurement needed. Then press MARK/ENTER key.

SET COUNT INCREMENT

The Count Increment number is the amount of unit measurements traveled to increment the count displayed in the interval window. The Count Increment number displayed in the interval window, as when you are measuring a street or road for addressing, is the actual E-911 house number. For example, if you set a unit measurement of 10 feet and a count increment of 1 you will have a house number of 1 at the first 10 ft mark, a house number of 2 at the 20 ft mark, a house number of 3 at the 30 ft mark, etc.

To set the count increment value depress the following sequence of keys: 8PDI key, 7SPEED key, and choose the INCREMENT DISTANCE.

Please note that after you press the 7SPEED key, the default “1” will appear. At this time re-enter value of count increment needed. Then press MARK/ENTR.

While entering increment distance, depressing CLEAR/RST key will set the distance measurement and house number to 0.

SET COUNT PRE-DISTANCE

To have your count increment began at a certain value other than 0 depress the following sequence of keys: 8 PDI key, 8 PDI key, (HOUSE NUMBER), MARK/ENTER key. The value will appear in the INTERVAL window.

AUXILIARY PROGRAMS

The NITESTAR has other specialized functions that are accessed by pressing the PRM key then a number key. These are functions that are not needed all the time but do prove very useful to many users.
To access, press the PRM key then enter in the selected program number and press MARK/ENTR key to start the program. **NOTE:** insure your instrument is in COUNT/HOLD mode before selecting any auxiliary program. NITESTAR can have program numbers from 0 to 255. Only a small fraction of this range is used and is summarized below. Refer to the section in the function description for information on the use of this operation. Some of the functions are described here. Others such as memory and baud rate functions are described in MEMORY and SERIAL I/O sections.

<table>
<thead>
<tr>
<th>Prm#</th>
<th>Description</th>
<th>Section</th>
<th>Model</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>Memory Mark Action</td>
<td>Memory Sect</td>
<td>All</td>
</tr>
<tr>
<td>1</td>
<td>Self-Test Operation</td>
<td>Aux Programs</td>
<td>All</td>
</tr>
<tr>
<td>2</td>
<td>Events as Words</td>
<td>Memory Sect</td>
<td>NS-60</td>
</tr>
<tr>
<td>3</td>
<td>Events as Numbers</td>
<td>Memory Sect</td>
<td>NS-60</td>
</tr>
<tr>
<td>5</td>
<td>Set Baud Rate</td>
<td>Serial I/O</td>
<td>NS-60</td>
</tr>
<tr>
<td>6</td>
<td>Speed Trap</td>
<td>Aux Programs</td>
<td>All</td>
</tr>
<tr>
<td>9</td>
<td>Set Display Flash Rate</td>
<td>Aux Programs</td>
<td>All</td>
</tr>
<tr>
<td>10</td>
<td>Calculate AREA</td>
<td>Aux Programs</td>
<td>All</td>
</tr>
<tr>
<td>11</td>
<td>Calculate VOLUME</td>
<td>Aux Programs</td>
<td>All</td>
</tr>
<tr>
<td>12</td>
<td>Calculate COST</td>
<td>Aux Programs</td>
<td>All</td>
</tr>
<tr>
<td>13</td>
<td>Calculate TONNAGE</td>
<td>Aux Programs</td>
<td>All</td>
</tr>
<tr>
<td>14</td>
<td>Calculate COST BY TON</td>
<td>Aux Programs</td>
<td>All</td>
</tr>
<tr>
<td>15</td>
<td>Begin / End Accumulate</td>
<td>Aux Programs</td>
<td>NS-60</td>
</tr>
<tr>
<td>30</td>
<td>Time Speed Delay</td>
<td>Aux Programs</td>
<td>NS-60</td>
</tr>
<tr>
<td>254</td>
<td>COUNT TEST</td>
<td>Aux Programs</td>
<td>All</td>
</tr>
<tr>
<td>255</td>
<td>DISPLAY TEST</td>
<td>Aux Programs</td>
<td>All</td>
</tr>
</tbody>
</table>

PROGRAM DESCRIPTIONS

PRM 1 (SELF TEST) NS-50/60

1: Place instrument in COUNT/HOLD mode.
2: Press PRM, 1, MARK/ENTR.
3: Press the RUN/HOLD key to release the COUNT/HOLD mode. The instrument will generate its own sensor signal. This is useful to simulate vehicle signals. It tests all of the instrument functions except the sensor input circuit. When in Self Test all annunciators on the display will flash.
4: To EXIT Self-test insure instrument is in COUNT/HOLD mode and press PRM1, MARK/ENTR.

PRM 6 (SPEED TRAP) NS-50/60

This function is used to calculate the speed of a vehicle passing between a predetermined set of markers.
1: With the instrument in COUNT/HOLD mode, set the desired speed and distance units.
2: Press PRM, 6, MARK/ENTR to enter the speed trap program.
3: Display will show COURSE. Enter in the distance between the markers in the current units, (i.e. 100), and press MARK/ENTR.
 4: As the vehicle passes the first marker, press MARK/ENTR. (The speed display will blur).
 5: As the vehicle passes the second marker, press MARK/ENTR again. The vehicle speed will be shown in the SPEED display.
 6: Go back to STEP 4 for the next vehicle.
 7: To EXIT the speed trap program press CLEAR.

If you have the RS-232 option and a printer the NITESTAR will output a count and speed each time the program calculates a new speed. For example, 1.) 53 -- 2.) 61 — 3.) 47

PRM 15 (BEGIN/END) NS-60 ONLY

Insure the instrument is in COUNT/HOLD mode. Press PRM, 15, MARK/ENTR. The display will show BE ON or BE OFF. If it says BE ON then the program will begin to accumulate intervals. After BE ON the next time you press PRINT or MARK/ENTR the printer will print:

<table>
<thead>
<tr>
<th>Event #</th>
<th>Distance</th>
<th>Delta Dist</th>
<th>Speed</th>
<th>Begin/EOS Accum Dist</th>
</tr>
</thead>
<tbody>
<tr>
<td>1. 12365</td>
<td>0</td>
<td>25</td>
<td>BEGIN</td>
<td></td>
</tr>
<tr>
<td>2. 12466</td>
<td>101</td>
<td>25</td>
<td>END</td>
<td>101</td>
</tr>
<tr>
<td>3. 13466</td>
<td>1000</td>
<td>25</td>
<td>BEGIN</td>
<td></td>
</tr>
<tr>
<td>4. 13567</td>
<td>101</td>
<td>25</td>
<td>END</td>
<td>202</td>
</tr>
</tbody>
</table>

The <Accum Distance> will be the sum of the <Delta Distance>‘s between the BEGIN/END markers. You can use this to measure guard rail for example. When you press MARK/ENTR it generates a BEGIN, the next press is an END.

The distance between each BEGIN and END is accumulated and printed at each END.

Insure instrument is in COUNT/HOLD mode and Press PRM, 15, MARK/ENTR to exit the BEGIN/END Program.

CALCULATION PROGRAMS

These functions do a calculation with the distance shown on the display. To use the calculations programs, first measure the desired distance using the NITESTAR. Then with the road distance on the display you can calculate the area, volume or amount of material for a paving or resurfacing job. Insure the instrument is in the COUNT/HOLD mode for all the calculation programs.
PRM 10 - AREA CALCULATION NS-50/60
This determines the area for a fixed lane width over distance displayed.
Press PRM, 10, MARK/ENTR

PROMPT
INPUT
- For FT/MI units
- For KM units

LANE
- Width in FEET
- Width in 0.1 meters (decimetres)

Enter correct width and press MARK/ENTR

~RESULT~

AREA
- AREA in SQ yards
- AREA in SQ meters

Depress PRINT to print results or MARK/ENTR to exit this calculation.

PRM 11 - VOLUME CALCULATION NS-50/60
For example, this is used to determine the volume of paving material. For a given lane width, thickness of material and the distance; a volume is computed. Insure the instrument is in the COUNT/HOLD mode.
Press PRM, 11, MARK/ENTR

PROMPT
INPUT
- For FT/MI units
- For KM units

LANE
- Width in FEET
- Width in 0.1 meters (decimetres)

DPH
- Thickness in inches
- Thickness in cm

~RESULT~

VOLUME
- in CU yards
- in CU meters

Depress MARK/ENTR key after each entry.
Press MARK/ENTR again, to exit this calculation.

PRM 12 - COST CALCULATION NS-50/60
This is used to estimate the cost of material for a job, the volume is calculated as in PRM 11 and then is multiplied by lb/cu yd or kg/cu m. This yields a cost for the volume of material used. Insure instrument is in COUNT/HOLD mode.
Press PRM, 12, MARK/ENTR

PROMPT
INPUT
- For FT/MI units
- For KM units

LANE
- Width in FEET
- Width in 0.1 meters (decimetres)

DPH
- Thickness in inches
- Thickness in cm

DEN
- Material Density in lb/cu yd or kg/cu m.

(If the material density given in lb/sq yd * in multiply by 36 to get lb/cu yd. If in kg/sq m *

~RESULT~

FILL
- Distance * width * thickness * density = mass result in tons (metric or English).

Depress MARK/ENTR key, to exit this calculation.

PRM 13 - TONNAGE CALCULATION NS-50/60
This is used to estimate the amount of material for a project, the volume is calculated as in PRM 11 and then is multiplied by lb/cu yd or kg/cu m. This yields an estimate of the number of tons of material needed. Insure instrument is in COUNT/HOLD mode.
Press PRM, 13, MARK/ENTR

PROMPT
INPUT
- For FT/MI units
- For KM units

LANE
- Width in FEET
- Width in 0.1 meters (decimetres)

DPH
- Thickness in inches
- Thickness in cm

DEN
- Material Density in lb/cu yd or kg/cu m.

(If the material density given in lb/sq yd * in multiply by 36 to get lb/cu yd. If in kg/sq m *

~RESULT~

FILL
- Distance * width * thickness * density = mass result in tons (metric or English).

Depress MARK/ENTR key, to exit this calculation.

PRM 14 - TONNAGE COST NS-50/60
This is used to estimate the cost of material for a job, the volume is calculated as in PRM 11 and then is multiplied by lb/cu yd or kg/cu m. This yields an estimate of the number of tons of material needed. Then you input a cost/ton value. Insure instrument is in COUNT/HOLD mode.
Press PRM, 14, MARK/ENTR

PROMPT
INPUT
- For FT/MI units
- For KM units

LANE
- Width in FEET
- Width in 0.1 meters (decimetres)

DPH
- Thickness in inches
- Thickness in cm

DEN
- Material Density in lb/cu yd or kg/cu m.

(If the material density given in lb/sq yd * in multiply by 36 to get lb/cu yd. If in kg/sq m *

~RESULT~

JOB
- Distance * width * thickness * density * cost = $ amnt result in $ or currency units.

Depress MARK/ENTR key after each entry and press MARK/ENTR again to exit this calculation. -- The NITESTAR will remember your inputs so you won’t have to input the constants such as lane width or cost each time. When the result is displayed it will stay until you press the MARK/ENTR key. After that the original distance is restored.
PRM 30 - TIME-SPEED-DELAY (TSD) NS-50/60

Traffic engineers often use TIME-SPEED-DELAY (TSD) measurements to evaluate roadways. They drive the road recording total trip time and total distance. Then dividing total distance by total time to get an average speed for the road segment. This measurement can be done at various times (i.e., at night, rush hour etc.) measuring congestion and other factors affecting traffic flow. The NITESTAR (50 & 60) after revision 3.0 has this function built in. When running in TSD mode, distance is accumulated and displayed as normal but the interval window now displays the elapsed trip time in minutes and seconds. The speed displayed is not the instantaneous speed but the average computed from the total distance divided by the total time.

TIME-SPEED-DELAY USE

STEP 1: Make sure your NITESTAR is version 3.0 or above, when you turn it on make sure it shows 3.0 or greater in the interval window. (If it does not contact your distributor or Nu-Metrics)

STEP 2: Verify your NiteStar has been calibrated and is measuring distance correctly.

STEP 3: Move to the start of the surveyed road. Then press PGM30, then MARK/ENTR. The display will then flash SP-DEL three times and the distance, interval and speed will all be zero.

STEP 4: The following keys are active now:
- RUN/HOLD: Starts the distance, speed & elapsed time counters
- DISP/HOLD: Freezes the distance, elapsed time & speed displays
- UNITS: Changes distance units on display
- SPEED: Changes speed units on display
- CLEAR: In COUNT HOLD, exit TSD. (Otherwise ignored)
- PRINT: In COUNT HOLD & Model 60 will print header.
- Otherwise same as MARK/ENTR
- MARK/ENTR: In Model 60 will print:
 # Distance Delta Dist Elapsed Time Speed

STEP 5: Run your route recording the time, speeds and distances. On the Model 50 you will have to write them down. On a Model 60 the values can be printed on a DPU-411 or captured on a computer.

STEP 6: When you are done, go to COUNT/HOLD using the RUN/HOLD key. Then press CLEAR to exit TSD mode. Use PRM30, MARK/ENTR to enter it again for another run.

While running TSD you can press either DISP/HOLD or RUN/HOLD to stop the display. These two have very different actions.

RUN/HOLD - Stops Time & Distance Count. Use to pause the survey.
DISP/HOLD - Holds the display ONLY. Time and Distance continue to accumulate.

TIME-SPEED-DELAY LIMITS

The Time Speed Delay survey cannot run longer than 255 minutes (4 hours 15 minutes). Beyond this point the printed time will be incorrect. The time on the display will only go to 99 minutes (1 hour 39 minutes). The speed results are correct after these times but the displayed times will not be correct.

0 - 99 Min. Displayed time OK, Printed Time OK, Speed OK
100-200 Min. Displayed time off, Printed Time OK, Speed OK by 100 minutes
201-255 Min. Displayed time off, Printed Time OK, Speed OK by 200 minutes
256-∞ Min. Displayed time off, Printed Time off, Speed OK

If you need longer times, consult Nu-Metrics. The NITESTAR-60 with a laptop computer can do longer surveys with TSD software.

PRINTER USE

If you have an NS-60 and a printer these functions will print out a summary of the calculation. With the result displayed and the printer ON; pressing PRINT will print the following:

<table>
<thead>
<tr>
<th>AREA Calculation</th>
<th>TONNAGE Calculation</th>
</tr>
</thead>
<tbody>
<tr>
<td>WIDTH: 10 FT</td>
<td>WIDTH: 10 FT</td>
</tr>
<tr>
<td>DIST: 1000 FT</td>
<td>DIST: 1000 FT</td>
</tr>
<tr>
<td>AREA: 1111 SQ YD</td>
<td>VOLUME: 185 CU YD</td>
</tr>
<tr>
<td></td>
<td>DENSITY: 3960 LB/CU YD</td>
</tr>
<tr>
<td></td>
<td>MASS: 366 TON</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>VOLUME Calculation</th>
<th>TONNAGE Cost Calculation</th>
</tr>
</thead>
<tbody>
<tr>
<td>WIDTH: 10 FT</td>
<td>WIDTH: 10 FT</td>
</tr>
<tr>
<td>HEIGHT: 6 IN</td>
<td>HEIGHT: 6 IN</td>
</tr>
<tr>
<td>DIST: 1000 FT</td>
<td>DIST: 1000 FT</td>
</tr>
<tr>
<td>AREA: 185 CU YD</td>
<td>VOLUME: 185 CU YD</td>
</tr>
<tr>
<td></td>
<td>DENSITY: 3960 LB/CU YD</td>
</tr>
<tr>
<td></td>
<td>MASS: 366 TON</td>
</tr>
<tr>
<td></td>
<td>AMOUNT: 2.00</td>
</tr>
<tr>
<td></td>
<td>COST: 732</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>COST Calculation</th>
<th>SERIAL INPUT / OUTPUT</th>
</tr>
</thead>
<tbody>
<tr>
<td>WIDTH: 10 FT</td>
<td>DATA FORMATS</td>
</tr>
<tr>
<td>HEIGHT: 6 IN</td>
<td>BAUD Rates: 9600, 4800, 2400</td>
</tr>
<tr>
<td>DIST: 1000 FT</td>
<td>1200, 600, 300</td>
</tr>
<tr>
<td>AMOUNT: 1.5</td>
<td>(See Selection Method on the</td>
</tr>
<tr>
<td>AREA: 185 CU YD</td>
<td>Next Page)</td>
</tr>
<tr>
<td>COST: 283</td>
<td></td>
</tr>
</tbody>
</table>

(See Selection Method on the Next Page)
Full Duplex:

1 START BIT, 1 STOP BIT, 8 DATA BITS, NO PARITY

0	1	2	3	4	5	6	7
START BIT

STOP BIT

Front View Serial Connector (Nitestar Data Connector):

1. (Blue) TTL OUT
2. (Yellow) GRND
3. (Green) RS-232 IN
4. RS-232 OUT (Red)
5. RS-232 PRQ (Black)
6. A/D IN (White)

SERIAL OPERATION
The Nitestar has both serial in and out capability. Commands can be input on serial input and distance, speed and time values are output to serial out. The instrument can be completely controlled over the serial lines. Anything the user can do from the keyboard is duplicated in the serial commands. Also the instrument serial baud rate can be set at any value from 9600 to 300 baud.

BAUD RATE SETTING
To select the proper baud rate depress the following sequence: 9PRM key, 5BRIGHTNESS key and MARK/ENTER.

The display will show:

```
BAUD: 9600 MI/FT/KM
```

STEP 1: Press DISP/HOLD to step thru the baud rate choices.

STEP 2: Press MARK/ENTER when the proper baud rate is displayed. Your baud rate is now selected.

PRINTED INSTRUCTIONS
The DPU-414 Printer is a portable thermal printer that can operate from an AC Power Adapter or from the built in rechargeable battery system. The battery operated system has a typical run time of 1,500 printed lines when fully charged.

The DPU-414 can be used in the vehicle to obtain a real-time printout, or in the office to “dump” inventory data previously stored in the Nitestar’s Memory.

Remember to fully charge your printer before starting your survey & turn off the printer when not in use to preserve battery life.

OPERATING THE PRINTER
STEP 1: Turn off printer power switch and Nitestar power switch.
STEP 2: Connect printer & Nitestar with interface cable.
STEP 3: Turn on power switches to the Nitestar & DPU-414.
Printer Status should be On Line, if not, make sure paper is loaded and ready. (Loading the Paper)
STEP 4: To advance the paper feed the printer must be in the Off Line mode.

See function listing below for further detail about printer operation.

FUNCTIONS THAT USE THE PRINTER
Memory DumpMemory Section 5
Print KeyKey Descriptions Section 4
Speed TrapAuxiliary Programs Section 6
Area CalculationAuxiliary Programs Section 6
Volume CalculationAuxiliary Programs Section 6
Job CostAuxiliary Programs Section 6

CHARGING THE PRINTER
STEP 1: Turn off power switch.
STEP 2: Plug-in DC plug on the AC adapter into the power supply jack on the printer.
STEP 3: Plug the AC adapter into an outlet.
STEP 4: Turn power on.

To remove the AC adapter, first turn off the power switch, then unplug the AC adapter and the DC plug.
OPENING THE PAPER HOLDER

STEP 1: Using your thumb, pull paper holder cover towards back of the printer. (Unlock it.)

STEP 2: Lift cover upwards.

When closing and locking the paper holder cover, follow the above instructions in reverse.

LOADING THE PAPER

STEP 1: Turn on power switch.

STEP 2: Cut the paper in an inverted V (see figure)

STEP 3: Open paper holder cover.

STEP 4: Push top of paper into inlet, and feed it by hand until you can see top of paper from paper cutter. The paper is easier to feed if placed on the cover.

STEP 5: Keep pressing the paper feed switch until the paper feeds straight and smoothly. When the paper is correctly set, the off line lamp stops flashing and stays lit instead.

NOTE: Red lines appear on both sides of the paper when paper is about to run out. The outside of the thermal paper is at the front.

PRINTER SPECIFICATIONS (DPU-414)

- Printing Method: Thermal serial dot
- Character: 9 high x 8 wide dot matrix
- Columns: 40
- Printing Direction: unidirectional, bi-directional logical seek
- Total number of dots: 8 x 320 dots / line
- Printing Direction: unidirectional
- Bi-directional logical seek
- Printing width: 89.6mm
- Printing speed: 37.5 cps
- External Dimensions: 162 x 240 x 58.5 mm
- Mainframe weight: 950g

PAPER

Jujo Paper Co. TP411-28CL

Paper width 112 mm, roll diameter 48mm, roll length 28m

OPERATING CONDITIONS

1. Operating temperature and humidity 0-40°C, 30-85% RH
2. Storage temperature and humidity -20-60°C, 5-90% RH

This section was an overview of the DPU-414 and contains enough information to conduct a typical survey using the Nitestar. For more detailed information about the DPU-414 please refer to the Printers Operation Manual.

TROUBLESHOOTING

If your Nitestar DMI appears to be inoperative, the following steps should be taken in order to determine if you have an installation problem, a sensor problem or an instrument problem.

1. Both +12 Volts and Ground to the terminal block MUST be obtained directly from the vehicle’s battery terminals. Check to make sure your black & red wires are connected direct to the vehicle battery. (Remember the In Line Fuse is required). Always wear safety goggles and protective clothing.

2. Make sure power is going to the instrument by checking with a meter or continuity tester. Refer to the Operating Manual, Installation Procedures which will show the pin’s location. If you do not have power, check for a loose connection or blown fuse. Always wear safety goggles and protective clothing.

3. Plug in the Nitestar and turn it on. It should begin its Self-Check, when completed (0) should be displayed in the Speed & Count windows. COUNT HOLD will flash in the function window.
TROUBLESHOOTING CONTINUED...

4. Enter the proper calibration number or re-calibrate as described in the Calibration section of your manual. Remember even if working properly, the DMI will not count unless a calibration number has been entered.

5. If after step #3 the instrument does not power up, the problem may be in the instrument and it should be returned for service.

Instrument is operational but does not count.

If the Nitestar has power and is operational but does not count, the trouble is most likely installation or sensor related.

1. Check your connector as described earlier. If no power, check for a loose connection or blown fuse. Always wear safety goggles and protective clothing.

2. If you do have power to the DMI you may have a bad sensor. To verify a bad sensor do the following:

 A. Make sure the DMI has a Calibration Number. If not, you can enter a fictitious number such as 900.

 B. Set the DMI up just like you expect to drive away and have it count (press Run/Hold key, etc.)

 C. At the terminal block remove the green wire that comes from the Nitestar.

 D. Tap the green wire to the black wire several times. The black wire should be ground. The instrument should count, it will register a random number, but it should register a number. If it registers a number, most likely everything from the terminal block up to the DMI is working, and the sensor may be defective.

 E. If the DMI did not register a count, the wiring harness or the DMI may be faulty.

If you have any questions, please call for Technical support at (724) 438-8750. If you return your DMI always include a note with your Name, Address (Both street and P.O Box) and a telephone number so that we can contact you if necessary.

LIMITED WARRANTY

The Nu-Metrics Nitestar instruments are covered by a one year limited warranty on parts and labor against defects in materials and workmanship. Sensors, targets, cables, connectors, brackets and other hardware is warranted for ninety (90) days.

Nu-Metrics, Inc. warrants each new instrument manufactured by it to be free from defective material and workmanship and agrees to remedy any such defect or to furnish a new part in exchange for any part of any unit of its manufacture which under normal installation, use and service discloses such defect, provided the unit is returned to our factory or authorized service agent, intact, for examination, with all transportation charges prepaid.

This warranty does not extend to any of our products which have been subjected to misuse, neglect, accident, incorrect wiring not our own, improper installation or to use in violation of instructions furnished by us, nor extended to units which have been repaired or altered outside of our factory or authorized service agent.

Any part of a unit approved for remedy or exchange hereunder will be remedied or exchanged by the authorized agent or our factory sales division without charge to the owner.

This warrant is in lieu of all other warranties expressed or implied and no representative or person is authorized to assume for us any other liability in connection with the sale of our products. Nu-Metrics, Inc. reserves the right to make improvements in the product specifications at any time without notice.

Questions concerning this warranty or any Nu-Metrics, Inc. product should be directed to either the Sales or Service Department at: (724) 438-8750
HYPERTERMINAL SET-UP FOR NS-60

Hyperterminal is a terminal emulation program that comes built into Windows. You can use it to control your NS-60 via a serial link. The controls for the NS-60 are the keys.

KEYBOARD Serial Commands (Simple Command Set)

Serial Command - NITESTAR Key

- **S** RUN/HOLD key
- **H** DISP/HOLD Key
- **C** CLEAR/RESET Key
- **CR** MARK/ENTER key
- **1** CAL key
- **2** UNIT key
- **3** PREDIST key
- **4** UP/DOWN key
- **5** Display Brightness key
- **6** PRINT key
- **7** SPEED key
- **8** PDI key
- **9** PRM key
- **0** VIEW key

Before using Hyperterminal with your NS-60 you must define a connection and then you will only have to click the connection Icon to use it again.

SETTING UP HYPERTERMINAL

From the **START** menu:

Double click on **HYPERTERMINAL** you will get:

The program will start and you will get a dialog asking you to create a connection description. What follows is the setup you have to do ONCE so Hyperterminal will work with your NS-60. Name the description "Nitestar" and give it an ATOMIC icon.

Click **OK** to move to the next step.

It will then bring up a dialog asking you about the phone number, in the Connect Using field we pick Direct to Com1. Here you would pick COM1 or COM2 depending on which port you will be using. Consult your computer manual to determine which you will be using.

Next you will be asked to set the serial I/O parameters.
Use the serial I/O parameters shown below:

Pick ASCII setup and you will get:

The next step is to set it so that when you look at data from the NS-60, it will display correctly on the screen. If you do not do this step the NS-60 will print all data on the same line on the screen.

After you have said OK to the above dialog then pick PROPERTIES and you will set the ASCII properties.

Pick the Settings tab and you will get:

Pick ASCII setup and you will get:

Pick the Append line feeds to incoming line ends then click OK on each box to save the settings.

Finally pick Exit on Hyperterminal and then you will see you now have a connection ICON for the Nitestar.

Pick that to start the program the next time.
USING HYPERTERMINAL

Start Hyperterminal by launching your new Nitestar icon. You can now issue the CAPTURE TEXT command to your NS-60.

To save all the NS-60 data to a file, select CAPTURE TEXT:

and then:

Pick the file name you want to save the text as.

This file will contain all your NS-60 data.

SPECIFICATIONS NITESTAR NS-50/60

POWER: 9 to 16 VDC, negative ground.

OPERATING TEMPERATURE: 0 degrees C to +70 degrees C.

DISPLAY: 1.0 ft. to 999,999 ft. Liquid Crystal W/ Backlight

DISTANCE RESOLUTION: + 1.0 ft.

ACCURACY: up to +/- 1 ft./MI

AUTOMATIC ERROR CORRECTION: (AEC)

KEYBOARD: Touch-Tell Silicon Rubber Keyboard,
Tone Verification w/Backlight

KEY FUNCTION: On/Off, Run/Hold, Display/Hold, Clear/Reset,
Mark/Enter, Calibrate, Unit, Pre-Distance, Up/Down,
Brightness, Print, Speed, Periodic Distance Interval, Program,
View, Numeric 0-9

PRE-DISTANCE: 0-999.999 in unit of measurement

SENSOR: Solid State Proximity, Transmission or Electronic Interface

BI-DIRECTIONAL: Compute distance count up or down.

PDI: Count Display, TTL Output, (12 VDC 1 Amp with P/N 1050)

DIMENSIONS: 7.5" (190.5mm) x 2.25" (57.15mm) x .88" (22.5mm)

CALIBRATION: Auto Calibration Entry / Manual

WEIGHT: 7.0 oz. • UNIT: Auto conversion Ft, Miles, Km

SPEED: 0-199 mph, Kph, fps

MEMORY: Two digit code (0-99),
Unlimited memory locations, Non-Volatile Type

MATERIAL CALCULATION: Area, Volume, Tonnage, Cost

SPECIFICATIONS NITESTAR (NS-60 ONLY)

COMMUNICATION: RS-232 In /Out

PRINTER: Serial Type

SELECTABLE BAUD RATE: (300-600-1,200-2,400-4,800-9,600)

INPUT: (1) 8 Bit 0-5 VDC Analog (1) Digital

OUTPUT: (1) Digital TTL Level
SERVICE OF YOUR EQUIPMENT

If your equipment should ever need servicing, you must contact the Nu-Metrics’ Service Department to acquire an RMA number to be included with your shipment. Please provide a description of the problem, your name, telephone number, complete return address and desired method of shipment with the product(s) you are returning. Send it freight (pre-paid) to the address below.

~ NITESTAR RETURN FORM ~

FAX? - If you have a fax number, please notify Customer Service so that an RMA form can be faxed for you to fill out. PLEASE MAIL THIS WITH THE PRODUCT(S) YOU ARE RETURNING.

NO FAX? Complete the form below & mail with your product
2. Pack the item(s) securely, in the original packing if possible.
3. Enclose a copy of original packing slip or invoice if possible.
4. Send the package prepaid and insured, using the return form address below.
5. If you have any questions, call Nu-Metrics’ Service Department at (724) 438-8750

RETURN AUTHORIZATION NUMBER: __________________________
Serial Number Of Returned Unit: __________________________
Model Number: ___________ Purchase Date: _____________
Your Name: ________________ Phone: (_____) ___________

Your Shipping Address:
__
__
__

Description Of Problem:
__
__
__
__

Return To: Nu-Metrics, Inc.
ATTN: Customer Service
518 University Drive
Uniontown, PA 15401 USA

SHIPPING CHOICE:
☐ FedEx Ground
☐ FedEx 2nd Day
☐ FedEx Overnight
Typical Survey Data Displayed When Using the GPS Option:

SURVEY REPORT FOR STUDY #12

File Location: C:\SDM\SURVEY.mdb
Started: 10/13/04 3:49:22 PM
Ended: 10/13/04 3:57:03 PM
Calibration: 998
GPS: Yes
Pre-Distance: 0
RangeTrack: No

- **Project:** Nu-Metrics
- **Route:** 110
- **State:** PA
- **Direction:** North
- **Reciprocal Run:** 0
- **Operator:** KBJ

<table>
<thead>
<tr>
<th>Distance</th>
<th>Delta</th>
<th>Speed</th>
<th>Description</th>
<th>Prompt</th>
<th>Comment</th>
<th>Latitude</th>
<th>Longitude</th>
<th>Elevation</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>0</td>
<td>11</td>
<td>Begin Survey</td>
<td>-</td>
<td>-</td>
<td>39° 56’ 59.0400” N</td>
<td>79° 39’ 06.6780” W</td>
<td>1113 ft</td>
</tr>
<tr>
<td>432</td>
<td>432</td>
<td>23</td>
<td>Telephone Pole</td>
<td>-</td>
<td>-</td>
<td>39° 56’ 57.6780” N</td>
<td>79° 38’ 37.5300” W</td>
<td>1063 ft</td>
</tr>
<tr>
<td>3190</td>
<td>2758</td>
<td>32</td>
<td>Telephone Pole</td>
<td>-</td>
<td>-</td>
<td>39° 56’ 26.1660” N</td>
<td>79° 38’ 47.0760” W</td>
<td>1089 ft</td>
</tr>
<tr>
<td>4964</td>
<td>1774</td>
<td>13</td>
<td>Stop Sign</td>
<td>-</td>
<td>-</td>
<td>39° 56’ 23.9040” N</td>
<td>79° 38’ 44.5260” W</td>
<td>1084 ft</td>
</tr>
<tr>
<td>5287</td>
<td>323</td>
<td>19</td>
<td>No Pass Zone</td>
<td>-</td>
<td>-</td>
<td>39° 56’ 20.3400” N</td>
<td>79° 38’ 40.3200” W</td>
<td>1084 ft</td>
</tr>
<tr>
<td>5773</td>
<td>486</td>
<td>22</td>
<td>Divided Highway</td>
<td>-</td>
<td>-</td>
<td>39° 56’ 03.7560” N</td>
<td>79° 38’ 37.6980” W</td>
<td>1226 ft</td>
</tr>
<tr>
<td>7587</td>
<td>1814</td>
<td>29</td>
<td>Passing Allowed</td>
<td>-</td>
<td>-</td>
<td>39° 55’ 57.6900” N</td>
<td>79° 38’ 38.7780” W</td>
<td>1266 ft</td>
</tr>
<tr>
<td>8201</td>
<td>614</td>
<td>31</td>
<td>No Pass Zone</td>
<td>-</td>
<td>-</td>
<td>39° 55’ 52.1160” N</td>
<td>79° 38’ 38.6580” W</td>
<td>1265 ft</td>
</tr>
<tr>
<td>8697</td>
<td>496</td>
<td>8</td>
<td>Stop Sign</td>
<td>-</td>
<td>-</td>
<td>39° 55’ 53.1180” N</td>
<td>79° 38’ 21.3480” W</td>
<td>1428 ft</td>
</tr>
<tr>
<td>10181</td>
<td>1484</td>
<td>24</td>
<td>Telephone Pole</td>
<td>-</td>
<td>-</td>
<td>39° 55’ 49.8360” N</td>
<td>79° 38’ 16.8060” W</td>
<td>1480 ft</td>
</tr>
<tr>
<td>10736</td>
<td>555</td>
<td>25</td>
<td>Telephone Pole</td>
<td>-</td>
<td>-</td>
<td>39° 55’ 52.6740” N</td>
<td>79° 38’ 25.3260” W</td>
<td>1367 ft</td>
</tr>
<tr>
<td>12014</td>
<td>1278</td>
<td>30</td>
<td>Passing Allowed</td>
<td>-</td>
<td>-</td>
<td>39° 55’ 51.8160” N</td>
<td>79° 38’ 34.7640” W</td>
<td>1279 ft</td>
</tr>
<tr>
<td>12810</td>
<td>796</td>
<td>35</td>
<td>Telephone Pole</td>
<td>-</td>
<td>-</td>
<td>39° 55’ 51.4740” N</td>
<td>79° 38’ 42.1380” W</td>
<td>1224 ft</td>
</tr>
<tr>
<td>13304</td>
<td>494</td>
<td>6</td>
<td>No Pass Zone</td>
<td>-</td>
<td>-</td>
<td>39° 55’ 52.6740” N</td>
<td>79° 38’ 44.4400” W</td>
<td>1104 ft</td>
</tr>
<tr>
<td>14842</td>
<td>1538</td>
<td>27</td>
<td>End Survey</td>
<td>-</td>
<td>-</td>
<td>39° 55’ 03.4260” N</td>
<td>79° 38’ 37.6200” W</td>
<td>1213 ft</td>
</tr>
</tbody>
</table>

Addendum to Nitestar Wiring on Page 4

PROXIMITY SENSOR WIRING DIAGRAM